Factors Affecting Students’ Perceived Outcomes and Satisfaction in Virtual Classrooms
DOI:
https://doi.org/10.52296/vje.2022.167-
Downloads
How to Cite
Abstract
The sudden switch from the traditional face-to-face classroom to a synchronous virtual classroom has been a challenge to universities’ lecturers and students. This study aims to determine factors affecting students’ perceived learning outcomes and satisfaction in the virtual mode of education. The structural equation model-based PLS technology is applied to analyze the relationships between the five factors and perceived learning outcomes and satisfaction of students who participated in online courses at three state universities in Hanoi. The study found four factors that significantly affected the students’ perceived outcomes: assessment, infrastructure, interaction, and self-motivation. Three factors that influence student satisfaction are infrastructure, interaction, and lecturer knowledge and facilitation. The survey was conducted virtually at an unfavorable time so the majority of survey respondents were first-year students, which might result in biased estimates. The research findings suggest that universities should provide more technological supports for both teachers and students, re-module subjects, ensure more realistic, justified, and unbiased assessment, stimulate teachers to interact with students respectfully and flexibly, take self-motivation in consideration in course design, and provide financial support in various forms for students. The research findings contribute to a comprehensive assessment of the effectiveness of online teaching and learning in the inevitable context of the COVID-19 pandemic.
Downloads
References
Alavi, M., Wheeler, B. C., & Valacich, J. S. (1995). Using IT to Reengineer Business Education: An Exploratory Investigation of Collaborative Telelearning. MIS Quarterly, 19(3), 293-312. https://doi.org/10.2307/249597
Chin, W., & Marcoulides, G. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Modern Methods for Business Research, 8.
Cohen, J. (1988). Set Correlation and Contingency Tables. Applied Psychological Measurement, 12(4), 425-434. https://doi.org/10.1177/014662168801200410
Colley, A. M., Gale, M. T., & Harris, T. A. (1994). Effects of Gender Role Identity and Experience on Computer Attitude Components. Journal of Educational Computing Research, 10(2), 129-137. https://doi.org/10.2190/8NA7-DAEY-GM8P-EUN5
Collis, B. (1991). Anticipating the impact of multimedia in education: lessons from literature. International Journal of Computers in Adult Education and Training, 2(2), 136-149.
Daft, R. L., & Lengel, R. H. (1986). Organizational Information Requirements, Media Richness and Structural Design. Management Science, 32(5), 554-571. https://doi.org/10.1287/mnsc.32.5.554
Eom, S., Wen, J., & Ashill, N. (2006). The Determinants of Students’ Perceived Learning Outcomes and Satisfaction in University Online Education: An Empirical Investigation. Decision Sciences Journal of Innovative Education, 4, 215-235. https://doi.org/10.1111/j.1540-4609.2006.00114.x
Falk, R., & Miller, N. (1992). A Primer for Soft Modeling. The University of Akron Press: Akron, OH.
Graham, M., & Scarborough, H. (2001). Enhancing the learning environment for distance education students. Distance Education, 22(2), 232-244. https://doi.org/10.1080/0158791010220204
Hillman, D. C. A., Willis, D. J., & Gunawardena, C. N. (1994). Learner‐interface interaction in distance education: An extension of contemporary models and strategies for practitioners. American Journal of Distance Education, 8(2), 30-42. https://doi.org/10.1080/08923649409526853
Keramati, A., Afshari-Mofrad, M., Amir-Ashayeri, D., & Nili, A. (2011). The Intervening Role of Infrastructures in E-Learning Performance. Digital Enterprise and Information Systems, Berlin, Heidelberg.
Leidner, D., & Jarvenpaa, S. (1995). The Use of Information Technology to Enhance Management School Education: A Theoretical View. MIS Quarterly, 19(3), 265-291. https://doi.org/10.2307/249596
Martin, F., Parker, M., & Deale, D. (2012). Examining Interactivity in Synchronous Virtual Classrooms. International Review of Research in Open and Distance Learning, 13, 227-260. https://doi.org/10.19173/irrodl.v13i3.1174
Moore, M. (1989). Three Types of Interaction. American Journal of Distance Education, 3, 1-7. https://doi.org/10.1080/08923648909526659
Nunnally, J. C. B. I. H. (1994). Psychometric theory. McGraw-Hill.
Peltier, J., Drago, W., & Schibrowsky, J. (2003). Virtual Communities and the Assessment of Online Marketing Education. Journal of Marketing Education, 25, 260-276. https://doi.org/10.1177/0273475303257762
Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-Based Virtual Learning Environments: A Research Framework and a Preliminary Assessment of Effectiveness in Basic IT Skills Training. MIS Quarterly, 25, 401-426. https://doi.org/10.2307/3250989
Quispe-Prieto, S., Cavalcanti-Bandos, M. F., Caipa-Ramos, M., Paucar-Caceres, A., & Rojas-Jiménez, H. H. (2021). A Systemic Framework to Evaluate Student Satisfaction in Latin American Universities under the COVID-19 Pandemic. Systems, 9(1), 15. https://doi.org/10.3390/systems9010015
Reeves, T., & Harmon, S. (1993). Systematic evaluation procedures for instructional hypermedia/multimedia. Annual Meeting of the American Educational Research Association, Atlanta.
Sanders Lopez, E., & Nagelhout, E. (1995). Building a Model for Distance Collaboration in the Computer-Assisted Business Communication Classroom. Business Communication Quarterly, 58(2), 15-20. https://doi.org/10.1177/108056999505800203
Schunk, D. H., & Zimmerman, B. J. (1994). Self-regulation of learning and performance: Issues and educational applications. Lawrence Erlbaum Associates, Inc.
Smith, P. (2001). Understanding Self-Regulated Learning and Its Implications for Accounting Educators and Researchers. Issues in Accounting Education, 16, 663-700. https://doi.org/10.2308/iace.2001.16.4.663
Soong, M. B., Chan, H. C., Chua, B. C., & Loh, K. F. (2001). Critical success factors for on-line course resources. Computers & Education, 36(2), 101-120. https://doi.org/10.1016/S0360-1315(00)00044-0
Swan, K. (2001). Virtual interaction: Design factors affecting student satisfaction and perceived learning in asynchronous online courses. Distance Education, 22(2), 306-331. https://doi.org/10.1080/0158791010220208
Trevitt, C. (1995). Interactive Multimedia in University Teaching and Learning: Some Pointers to Help Promote Discussion of Design Criteria. Paper presented at the Computers in University biological Education Virtual Conference, CITI Liverpool.
Volery, T., & Lord, D. (2000). Critical success factors in online education. International Journal of Educational Management, 14, 216-223. https://doi.org/10.1108/09513540010344731
Webster, J., & Hackley, P. (1997). Teaching Effectiveness in Technology-Mediated Distance Learning. The Academy of Management Journal, 40(6), 1282-1309. https://doi.org/10.2307/257034
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vietnam Journal of Education
This work is licensed under a Creative Commons Attribution 4.0 International License.