Evaluating the Feasibility of Using Generative AI for Educational Research within the Context of Vietnam’s 2018 General Education Curriculum
DOI:
https://doi.org/10.52296/vje.2025.481-
Downloads
How to Cite
Abstract
This study examines the feasibility of using generative AI tools in educational research within the context of Vietnam’s 2018 General Education Curriculum. The research evaluates three AI-powered tools – ChatGPT, Gemini, and Copilot - amid growing interest in AI's integration into academic fields, particularly in education. The focus is on their strengths across specific areas of educational research: curriculum development, implementation requirements, and evaluation and assessment. The tools' performance is assessed based on five criteria: accuracy, comprehensiveness, logical clarity, relevance, and currency of information. ChatGPT performs effectively in global citizenship education (curriculum development) while Gemini excels in history assessment standards (evaluation and assessment). Copilot shows promise but struggles with accuracy in certain domains. Despite variations in performance, all tools demonstrate potential in improving research processes, especially in tasks where absolute precision is not critical. However, accuracy remains a significant challenge across all platforms. The findings suggest that AI tools can greatly enhance academic work when used with proper verification and structured commands, underscoring their practical applications and future potential in transforming research methodologies.
Downloads
References
Alasker, A., Alsalamah, S., Alshathri, N., Almansour, N., Alsalamah, F., Alghafees, M., AlKhamees, M., & Alsaikhan, B. (2024). Performance of large language models (LLMs) in providing prostate cancer information. BMC Urology, 24(1). https://doi.org/10.1186/s12894-024-01570-0
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3442188.3445922
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., & Amodei, D. (2020, May 28). Language Models are Few-Shot Learners. arXiv.org. https://arxiv.org/abs/2005.14165
Camillepack. (2024). Microsoft 365 Copilot overview. Microsoft Learn. https://learn.microsoft.com/en-us/copilot/microsoft-365/microsoft-365-copilot-overview
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review. https://doi.org/10.1162/99608f92.8cd550d1
Gibson, D., Jackson, S., Shanmugasundaram, R., Seth, I., Siu, A., Ahmadi, N., Kam, J., Mehan, N., Thanigasalam, R., Jeffery, N., Patel, M. I., & Leslie, S. (2024). Evaluating the efficacy of ChatGPT as a patient education tool in prostate Cancer: A Multi-Metric Assessment (Preprint). Journal of Medical Internet Research, 26, e55939. https://doi.org/10.2196/55939
Google. (2023). Gemini: AI-powered tools for research. https://research.google.com/gemini
Henson, R. (2015). Analysis of Variance (ANOVA). In Elsevier eBooks (pp. 477-481). https://doi.org/10.1016/b978-0-12-397025-1.00319-5
Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75-105. https://doi.org/10.5555/2017212.2017217
Hochmair, H. H., Juhász, L., & Kemp, T. (2024). Correctness comparison of ChatGPT‐4, Gemini, Claude‐3, and Copilot for spatial tasks. Transactions in GIS. https://doi.org/10.1111/tgis.13233
Hosseini, M., Rasmussen, L. M., & Resnik, D. B. (2023). Using AI to write scholarly publications. Accountability in Research, 1-9. https://doi.org/10.1080/08989621.2023.2168535
Kaftan, A. N., Hussain, M. K., & Naser, F. H. (2024). Response accuracy of ChatGPT 3.5 Copilot and Gemini in interpreting biochemical laboratory data: a pilot study. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58964-1
KelliDavis. (2024). Overview of Copilot. Microsoft Learn. https://learn.microsoft.com/en-us/copilot/overview
Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., & Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), e0000198. https://doi.org/10.1371/journal.pdig.0000198
Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790
Megahed, F. M., Chen, Y., Ferris, J. A., Knoth, S., & Jones-Farmer, L. A. (2023). How generative AI models such as ChatGPT can be (mis)used in SPC practice, education, and research? An exploratory study. Quality Engineering, 1-29. https://doi.org/10.1080/08982112.2023.2206479
Microsoft. (2023). Copilot: AI for knowledge workers. https://www.microsoft.com/copilot
MOET (Ministry of Education and Training). (2018). Vietnam's 2018 new curriculum framework. Ministry of Education and Training, Vietnam.
Morgan, D. L. (2023). Exploring the use of artificial intelligence for qualitative data analysis: the case of ChatGPT. International Journal of Qualitative Methods, 22. https://doi.org/10.1177/16094069231211248
Nguyen-Trung, K. (2024). ChatGPT in Thematic Analysis: Can AI become a research assistant in qualitative Research? OSF Preprints. In press. https://doi.org/10.31219/osf.io/vefwc
Nguyen-Trung, K., Saeri, A. K., & Kaufman, S. (2023). Applying ChatGPT and AI-powered tools to accelerate evidence reviews. OSF. In press. https://doi.org/10.31219/osf.io/pcrqf
Nikolic, S., Sandison, C., Haque, R., Daniel, S., Grundy, S., Belkina, M., Lyden, S., Hassan, G. M., & Neal, P. (2024). ChatGPT, Copilot, Gemini, SciSpace and Wolfram versus higher education assessments: an updated multi-institutional study of the academic integrity impacts of Generative Artificial Intelligence (GenAI) on assessment, teaching and learning in engineering. Australasian Journal of Engineering Education, 1-28. https://doi.org/10.1080/22054952.2024.2372154
OpenAI (2023). ChatGPT: AI models for advanced language tasks. https://openai.com/chatgpt
Peres, R., Schreier, M., Schweidel, D., & Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice. International Journal of Research in Marketing, 40(2), 269-275. https://doi.org/10.1016/j.ijresmar.2023.03.001
Rahman, M., Terano, H. J. R., Rahman, N., Salamzadeh, A., & Rahaman, S. (2023). ChatGPT and Academic Research: A review and recommendations based on practical examples. Journal of Education Management and Development Studies, 3(1), 1-12. https://doi.org/10.52631/jemds.v3i1.175
Rane, N., Choudhary, S., & Rane, J. (2024). Gemini versus ChatGPT: Applications, performance, architecture, capabilities, and implementation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4723687
Rossettini, G., Rodeghiero, L., Corradi, F., Cook, C., Pillastrini, P., Turolla, A., Castellini, G., Chiappinotto, S., Gianola, S., & Palese, A. (2024). Comparative accuracy of ChatGPT-4, Microsoft Copilot and Google Gemini in the Italian entrance test for healthcare sciences degrees: a cross-sectional study. BMC Medical Education, 24(1). https://doi.org/10.1186/s12909-024-05630-9
Shang, L., Li, R., Xue, M., Guo, Q., & Hou, Y. (2024). Evaluating the application of ChatGPT in China’s residency training education: An exploratory study. Medical Teacher, 1-7. https://doi.org/10.1080/0142159x.2024.2377808
Singh, H., & Singh, A. (2023). ChatGPT: Systematic Review, Applications, and Agenda for Multidisciplinary Research. Journal of Chinese Economic and Business Studies, 21(2), 193-212. https://doi.org/10.1080/14765284.2023.2210482
Songkram, N., Chootongchai, S., Keereerat, C., & Songkram, N. (2024). Potential of ChatGPT in academic research: exploring innovative thinking skills. Interactive Learning Environments, 1-23. https://doi.org/10.1080/10494820.2024.2375342
UNESCO (2016). Education for people and planet: Creating sustainable futures for all. Global Education Monitoring Report.
Van Dis, E. a. M., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7
Yenduri, G., M, R., G, C. S., Y, S., Srivastava, G., Maddikunta, P. K. R., G, D. R., Jhaveri, R. H., B, P., Wang, W., Vasilakos, A., V., & Gadekallu, T. R. (2023). Generative Pre-trained Transformer: a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.10435
Yıldız, M. S. (2023). Comparing response performances of ChatGPT-3.5, ChatGPT-4 and Bard to Health-Related questions: comprehensiveness, accuracy and being Up-to-Date. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4503443
Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). Sage Publications.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Education

This work is licensed under a Creative Commons Attribution 4.0 International License.