Evaluating the Feasibility of Using Generative AI for Educational Research within the Context of Vietnam’s 2018 General Education Curriculum

Authors

  • Ngoan Quynh Thi Nguyen The Vietnam National Institute of Educational Sciences, Vietnam
  • Ngoc My Tran The Vietnam National Institute of Educational Sciences, Vietnam
  • Hang Thu Vu Oxford University, United Kingdom
  • Lan Thi Tran The Vietnam National Institute of Educational Sciences, Vietnam
  • Ha Viet Thi Nguyen The Vietnam National Institute of Educational Sciences, Vietnam
  • Thuy Thanh Bui The Vietnam National Institute of Educational Sciences, Vietnam
  • Trinh Thanh Nguyen The Vietnam National Institute of Educational Sciences, Vietnam

DOI:

https://doi.org/10.52296/vje.2025.481

How to Cite

Nguyen, N. Q. T., Tran, N. M., Vu, H. T., Tran, L. T., Nguyen, H. V. T., Bui, T. T., & Nguyen, T. T. (2025). Evaluating the Feasibility of Using Generative AI for Educational Research within the Context of Vietnam’s 2018 General Education Curriculum. Vietnam Journal of Education, 9(2), 253–264. https://doi.org/10.52296/vje.2025.481

Abstract

This study examines the feasibility of using generative AI tools in educational research within the context of Vietnam’s 2018 General Education Curriculum. The research evaluates three AI-powered tools – ChatGPT, Gemini, and Copilot - amid growing interest in AI's integration into academic fields, particularly in education. The focus is on their strengths across specific areas of educational research: curriculum development, implementation requirements, and evaluation and assessment. The tools' performance is assessed based on five criteria: accuracy, comprehensiveness, logical clarity, relevance, and currency of information. ChatGPT performs effectively in global citizenship education (curriculum development) while Gemini excels in history assessment standards (evaluation and assessment). Copilot shows promise but struggles with accuracy in certain domains. Despite variations in performance, all tools demonstrate potential in improving research processes, especially in tasks where absolute precision is not critical. However, accuracy remains a significant challenge across all platforms. The findings suggest that AI tools can greatly enhance academic work when used with proper verification and structured commands, underscoring their practical applications and future potential in transforming research methodologies.

Downloads

Download data is not yet available.

Author Biographies

Ngoan Quynh Thi Nguyen, The Vietnam National Institute of Educational Sciences, Vietnam

 

 

Ngoc My Tran, The Vietnam National Institute of Educational Sciences, Vietnam

 

 

Hang Thu Vu, Oxford University, United Kingdom

 

 

Lan Thi Tran, The Vietnam National Institute of Educational Sciences, Vietnam

 

 

Ha Viet Thi Nguyen, The Vietnam National Institute of Educational Sciences, Vietnam

 

 

Thuy Thanh Bui, The Vietnam National Institute of Educational Sciences, Vietnam

 

 

Trinh Thanh Nguyen, The Vietnam National Institute of Educational Sciences, Vietnam

 

 

References

Alasker, A., Alsalamah, S., Alshathri, N., Almansour, N., Alsalamah, F., Alghafees, M., AlKhamees, M., & Alsaikhan, B. (2024). Performance of large language models (LLMs) in providing prostate cancer information. BMC Urology, 24(1). https://doi.org/10.1186/s12894-024-01570-0

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3442188.3445922

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., & Amodei, D. (2020, May 28). Language Models are Few-Shot Learners. arXiv.org. https://arxiv.org/abs/2005.14165

Camillepack. (2024). Microsoft 365 Copilot overview. Microsoft Learn. https://learn.microsoft.com/en-us/copilot/microsoft-365/microsoft-365-copilot-overview

Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review. https://doi.org/10.1162/99608f92.8cd550d1

Gibson, D., Jackson, S., Shanmugasundaram, R., Seth, I., Siu, A., Ahmadi, N., Kam, J., Mehan, N., Thanigasalam, R., Jeffery, N., Patel, M. I., & Leslie, S. (2024). Evaluating the efficacy of ChatGPT as a patient education tool in prostate Cancer: A Multi-Metric Assessment (Preprint). Journal of Medical Internet Research, 26, e55939. https://doi.org/10.2196/55939

Google. (2023). Gemini: AI-powered tools for research. https://research.google.com/gemini

Henson, R. (2015). Analysis of Variance (ANOVA). In Elsevier eBooks (pp. 477-481). https://doi.org/10.1016/b978-0-12-397025-1.00319-5

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75-105. https://doi.org/10.5555/2017212.2017217

Hochmair, H. H., Juhász, L., & Kemp, T. (2024). Correctness comparison of ChatGPT‐4, Gemini, Claude‐3, and Copilot for spatial tasks. Transactions in GIS. https://doi.org/10.1111/tgis.13233

Hosseini, M., Rasmussen, L. M., & Resnik, D. B. (2023). Using AI to write scholarly publications. Accountability in Research, 1-9. https://doi.org/10.1080/08989621.2023.2168535

Kaftan, A. N., Hussain, M. K., & Naser, F. H. (2024). Response accuracy of ChatGPT 3.5 Copilot and Gemini in interpreting biochemical laboratory data: a pilot study. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58964-1

KelliDavis. (2024). Overview of Copilot. Microsoft Learn. https://learn.microsoft.com/en-us/copilot/overview

Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., & Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), e0000198. https://doi.org/10.1371/journal.pdig.0000198

Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790

Megahed, F. M., Chen, Y., Ferris, J. A., Knoth, S., & Jones-Farmer, L. A. (2023). How generative AI models such as ChatGPT can be (mis)used in SPC practice, education, and research? An exploratory study. Quality Engineering, 1-29. https://doi.org/10.1080/08982112.2023.2206479

Microsoft. (2023). Copilot: AI for knowledge workers. https://www.microsoft.com/copilot

MOET (Ministry of Education and Training). (2018). Vietnam's 2018 new curriculum framework. Ministry of Education and Training, Vietnam.

Morgan, D. L. (2023). Exploring the use of artificial intelligence for qualitative data analysis: the case of ChatGPT. International Journal of Qualitative Methods, 22. https://doi.org/10.1177/16094069231211248

Nguyen-Trung, K. (2024). ChatGPT in Thematic Analysis: Can AI become a research assistant in qualitative Research? OSF Preprints. In press. https://doi.org/10.31219/osf.io/vefwc

Nguyen-Trung, K., Saeri, A. K., & Kaufman, S. (2023). Applying ChatGPT and AI-powered tools to accelerate evidence reviews. OSF. In press. https://doi.org/10.31219/osf.io/pcrqf

Nikolic, S., Sandison, C., Haque, R., Daniel, S., Grundy, S., Belkina, M., Lyden, S., Hassan, G. M., & Neal, P. (2024). ChatGPT, Copilot, Gemini, SciSpace and Wolfram versus higher education assessments: an updated multi-institutional study of the academic integrity impacts of Generative Artificial Intelligence (GenAI) on assessment, teaching and learning in engineering. Australasian Journal of Engineering Education, 1-28. https://doi.org/10.1080/22054952.2024.2372154

OpenAI (2023). ChatGPT: AI models for advanced language tasks. https://openai.com/chatgpt

Peres, R., Schreier, M., Schweidel, D., & Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice. International Journal of Research in Marketing, 40(2), 269-275. https://doi.org/10.1016/j.ijresmar.2023.03.001

Rahman, M., Terano, H. J. R., Rahman, N., Salamzadeh, A., & Rahaman, S. (2023). ChatGPT and Academic Research: A review and recommendations based on practical examples. Journal of Education Management and Development Studies, 3(1), 1-12. https://doi.org/10.52631/jemds.v3i1.175

Rane, N., Choudhary, S., & Rane, J. (2024). Gemini versus ChatGPT: Applications, performance, architecture, capabilities, and implementation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4723687

Rossettini, G., Rodeghiero, L., Corradi, F., Cook, C., Pillastrini, P., Turolla, A., Castellini, G., Chiappinotto, S., Gianola, S., & Palese, A. (2024). Comparative accuracy of ChatGPT-4, Microsoft Copilot and Google Gemini in the Italian entrance test for healthcare sciences degrees: a cross-sectional study. BMC Medical Education, 24(1). https://doi.org/10.1186/s12909-024-05630-9

Shang, L., Li, R., Xue, M., Guo, Q., & Hou, Y. (2024). Evaluating the application of ChatGPT in China’s residency training education: An exploratory study. Medical Teacher, 1-7. https://doi.org/10.1080/0142159x.2024.2377808

Singh, H., & Singh, A. (2023). ChatGPT: Systematic Review, Applications, and Agenda for Multidisciplinary Research. Journal of Chinese Economic and Business Studies, 21(2), 193-212. https://doi.org/10.1080/14765284.2023.2210482

Songkram, N., Chootongchai, S., Keereerat, C., & Songkram, N. (2024). Potential of ChatGPT in academic research: exploring innovative thinking skills. Interactive Learning Environments, 1-23. https://doi.org/10.1080/10494820.2024.2375342

UNESCO (2016). Education for people and planet: Creating sustainable futures for all. Global Education Monitoring Report.

Van Dis, E. a. M., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7

Yenduri, G., M, R., G, C. S., Y, S., Srivastava, G., Maddikunta, P. K. R., G, D. R., Jhaveri, R. H., B, P., Wang, W., Vasilakos, A., V., & Gadekallu, T. R. (2023). Generative Pre-trained Transformer: a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.10435

Yıldız, M. S. (2023). Comparing response performances of ChatGPT-3.5, ChatGPT-4 and Bard to Health-Related questions: comprehensiveness, accuracy and being Up-to-Date. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4503443

Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). Sage Publications.

Downloads

Published

2025-06-30

How to Cite

Nguyen, N. Q. T., Tran, N. M., Vu, H. T., Tran, L. T., Nguyen, H. V. T., Bui, T. T., & Nguyen, T. T. (2025). Evaluating the Feasibility of Using Generative AI for Educational Research within the Context of Vietnam’s 2018 General Education Curriculum. Vietnam Journal of Education, 9(2), 253–264. https://doi.org/10.52296/vje.2025.481

Issue

Section

Original Articles